73 research outputs found

    Audio Classification in Speech and Music: A Comparison between a Statistical and a Neural Approach

    Get PDF
    We focus the attention on the problem of audio classification in speech and music for multimedia applications. In particular, we present a comparison between two different techniques for speech/music discrimination. The first method is based on Zero crossing rate and Bayesian classification. It is very simple from a computational point of view, and gives good results in case of pure music or speech. The simulation results show that some performance degradation arises when the music segment contains also some speech superimposed on music, or strong rhythmic components. To overcome these problems, we propose a second method, that uses more features, and is based on neural networks (specifically a multi-layer Perceptron). In this case we obtain better performance, at the expense of a limited growth in the computational complexity. In practice, the proposed neural network is simple to be implemented if a suitable polynomial is used as the activation function, and a real-time implementation is possible even if low-cost embedded systems are used

    Enhancing Safety on Construction Sites: A UWB-Based Proximity Warning System Ensuring GDPR Compliance to Prevent Collision Hazards

    Get PDF
    Construction is known as one of the most dangerous industries in terms of worker safety. Collisions due the excessive proximity of workers to moving construction vehicles are one of the leading causes of fatal and non-fatal accidents on construction sites internationally. Proximity warning systems (PWS) have been proposed in the literature as a solution to detect the risk for collision and to alert workers and equipment operators in time to prevent collisions. Although the role of sensing technologies for situational awareness has been recognised in previous studies, several factors still need to be considered. This paper describes the design of a prototype sensor-based PWS, aimed mainly at small and medium-sized construction companies, to collect real-time data directly from construction sites and to warn workers of a potential risk of collision accidents. It considers, in an integrated manner, factors such as cost of deployment, the actual nature of a construction site as an operating environment and data protection. A low-cost, ultra-wideband (UWB)-based proximity detection system has been developed that can operate with or without fixed anchors. In addition, the PWS is compliant with the General Data Protection Regulation (GDPR) of the European Union. A privacy-by-design approach has been adopted and privacy mechanisms have been used for data protection. Future work could evaluate the PWS in real operational conditions and incorporate additional factors for its further development, such as studies on the timely interpretation of data

    AUDIO CLASSIFICATION IN SPEECH AND MUSIC: A COMPARISON OF DIFFERENT APPROACHES

    Get PDF
    This paper presents a comparison between different techniques for audio classification into homogeneous segments of speech and music. The first method is based on Zero Crossing Rate and Bayesian Classification (ZB), and it is very simple from a computational point of view. The second approach uses a Multi Layer Perceptron network (MLP) and requires therefore more computations. The performance of the proposed algorithms has been evaluated in terms of misclassification errors and precision in music-speech change detection. Both the proposed algorithms give good results, even if the MLP shows the best performance

    Development of a gas nanosensor node powered by solar cells

    Get PDF
    This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks

    Performance analysis of PROFINET networks

    No full text
    Nowadays, Ethernet networks may be profitably employed also at the lowest levels of factory automation systems. Indeed, suitable application layer protocols for Ethernet have been recently developed in order to cope with the critical requirements imposed by the industrial applications. In this paper we focus on the protocols used by PROFINET, an emerging standard for industrial communications based on Ethernet, which is now available in two different versions, named CBA and IO. After a description of the protocols, we show the results of some tests aimed at evaluating the performances of such a network. In particular, we concentrate the attention on the times necessary to transfer limited amounts of data among stations. With regard to PROFINET CBA, the outcomes of an experimental set-up comprising several components, show, for the transfer times, highly variable values, dependent on the network load. Conversely, for PROFINET IO, the results of a set of numerical simulations we performed, allow to expect constant transfer times of some milliseconds, or even less, provided that an accurate time synchronization between stations is maintained
    corecore